
System Device Tree and Xen Dom0less
Hypervisor Domains have been discussed (some details are still missing)

they are a target for the next few months

System Device Tree Domains were inspired by Xen Dom0less

Dom0less was recently extended and it is coming to x86 with Hyperlaunch

System Device Tree and Hyperlaunch today are not identical but they are aligned

in the short term lopper can be used to generated a Hyperlaunch configuration from System Device Tree

in the long term aim at unifying the two specs

Domains Hierarchy: the example of Xen
Domains are naturally hierarchical

The example of Xen: Xen is running domains (VMs) and it is also a domain in itself

It makes sense to make Domains hierarchical in System Device Tree

lower privileged Domains are children of higher privileged Domains

the description of complex systems becomes more readable and understandable

 domains {

 xen: domain@0 {

 compatible = "openamp,domain-v1";

 cpus = <&cpus_a72 0x3 0x00000002>;

 memory = <0x0 0x500000 0x0 0x7fb00000>;

 id = <0xffff>;

 linux1: domain@1 {

 compatible = "openamp,domain-v1";

 cpus = <&cpus_a72 0x3 0x00000001>;

 memory = <0x0 0x501000 0x0 0x3faff000>;

 id = <0x0>;

 access = <&mmc0>;

 };

 linux2: domain@2 {

 compatible = "openamp,domain-v1";

 cpus = <&cpus_a72 0x3 0x00000001>;

 memory = <0x0 0x40000000 0x0 0x40000000>;

 id = <0x1>;

 };

 };

 };

Xilinx Subsystems
A Subsystem is a Xilinx firmware concept related to power and life-cycle management of hardware resources

Hardware resources that are powered up and reset together belong to the same subsystem

Xilinx firmware can configure bus-level protection for Subsystems

a Xilinx subsystem can span multiple CPUs clusters

e.g. Cortex-As and Cortex-Rs can belong to the same Subsystem

Xilinx Subsystems are similar to System Device Tree Domains

Describe Xilinx Subsystems in S-DT as the top level Domains of the Hierarchy

Xilinx Subsystems: example
Things to notice:

Subsystems as top-level Domains with a new compatible string

new id property

new sram property to describe mmio-sram regions

the ATF domain running at EL3

How should ATF be described?

 domains {

 resource_group0: resource_group@0 {

 compatible = "openamp,group-v1";

 sram = <0x0 0xffff0000 0x0 0x10000>;

 };

 subsystem0: domain@0 {

 compatible = "xlnx,subsystem-v1", "openamp,domain-v1";

 cpus = <&cpus_a72 0x3 0x80000003>;

 memory = <0x0 0x0 0x0 0x80000000>;

 id = <0x4>;

 firewallconf-default = <block 0>;

 atf: domain@1 {

 compatible = "openamp,domain-v1";

 id = <0xffff>;

 cpus = <&cpus_a72 0x3 0x80000003>;

 memory = <0x0 0x0 0x0 0x80000000>;

 access = <&ipi0>;

 linux: domain@2 {

 compatible = "openamp,domain-v1";

 id = <0x0>;

 cpus = <&cpus_a72 0x3 0x00000001>;

 memory = <0x0 0x0 0x0 0x7FF00000>;

 access = <&can1 &i2c0 &ttc0 &ttc1 &watchdog &usb0 &gem0>;

 include = <&resource_group0>;

 };

 };

 };

 subsystem1: domain@3 {

 compatible = "xlnx,subsystem-v1", "openamp,domain-v1";

 cpus = <&cpus_r5 0x3 0x80000001>;

 memory = <0x0 0xffe00000 0x0 0x100000>;

 id = <0x5>;

 firewallconf-default = <block 0>;

 freertos: domain@4 {

 id = <0x6>;

 cpus = <&cpus_r5 0x3 0x80000001>;

 memory = <0x0 0xffe00000 0x0 0x100000>;

 access = <&ipi1 &watchdog1 &spi1 &ttc2 &usb1>;

 include = <&resource_group0>;

 };

 };

 };

Access Flags are Domain Specific
how do access flags work with hierarchical domains?

we used to specify access flags as follows:

 access = <ð0 0x000f0f0f>

cumbersome: some domains can have very many devices in the access list

Xilinx Subsystems configure access differently from Xen domains

Xen uses the IOMMU and Xilinx firmware (PLM) uses bus firewalls

Xilinx Subsystems and Xen domains need different access flags

access flags are domains specific

Access Flags and Device Sharing
when a device is shared across multiple domains is specified in a resource group

a device can be shared across domains of different kinds

e.g. a Xen domain and a Xilinx subsystem sharing a device

we need to be able to specify different access flags for each domain that is sharing the device

temporary proposal (discarded):

 // device access-flags-domain0 access-flags-domain1

 access = <ð0 0x000f0f0f 0xff000000>

not easy to read

requires specifying which is the first domain and which is the second domain

 resource_group_1: resource_group_1 {

 compatible = "openamp,resource-group-v1";

 access = <ðernet 0x0 0x1 0x2>, <&serial0 0x0 0x1 0x2>;

 access-flags-index = <0 1>;

 };

 domain@0 {

 #access-flags-cells = <0x1>;

 compatible = "openamp,domain-v1";

 access = <&mmc0 0x0>;

 include = <&resource_group_1 0x0>;

 };

 domain@1 {

 #access-flags-cells = <0x2>;

 compatible = "openamp,domain-v1";

 access = <&can0 0x1 0x2>;

 include = <&resource_group_1 0x1>;

 };

Access Flags: a better way
access flags are domain specific --> define them at the domain level

give a name to each access flags group

use the group name to select which set of flags to use for each assigned devices

the same flags name can be defined differently by different domains

solve the problem of devices in resource groups

 resource_group_1: resource_group_1 {

 compatible = "openamp,group-v1";

 access = <ðernet0>;

 access-flags-names = "shared";

 };

 domain@0 {

 #flags-cells = <1>;

 flags = <0x1 0x0>;

 flags-names = "dev", "shared";

 access = <&mmc0>;

 access-flags-names = "dev";

 include = <&resource_group_1>;

 };

 domain@1 {

 #flags-cells = <1>;

 flags = <0xf>;

 flags-names = "shared";

 include = <&resource_group_1>;

 };

Full Example
 domains {

 #address-cells = <0x2>;

 #size-cells = <0x2>;

 resource_group_1: resource_group_1 {

 compatible = "openamp,group-v1";

 access = <ðernet0, &serial0>;

 };

 subsystem1: domain@1 {

 compatible = "xilinx,subsystem-v1", "openamp,domain-v1";

 cpus = <&cpus_a72 0x3 0x80000003>;

 memory = <0x0 0x500000 0x0 0x7fb00000>;

 #flags-cells = <1>;

 flags = <0x1>;

 flags-names = "dev";

 access = <&mmc0>;

 access-flags-names = "dev";

 id = <0x3>;

 xen: domain@2 {

 compatible = "openamp,domain-v1";

 cpus = <&cpus_a72 0x3 0x00000002>;

 memory = <0x0 0x500000 0x0 0x7fb00000>;

 id = <0xffff>;

 linux1: domain@3 {

 compatible = "openamp,domain-v1";

 cpus = <&cpus_a72 0x3 0x00000001>;

 memory = <0x0 0x501000 0x0 0x3faff000>;

 id = <0x0>;

 access = <&mmc0>;

 };

 linux2: domain@4 {

 compatible = "openamp,domain-v1";

 cpus = <&cpus_a72 0x3 0x00000001>;

 memory = <0x0 0x40000000 0x0 0x40000000>;

 id = <0x1>;

 include = <&resource_group_1>;

 };

 };

 };

 subsystem2: domain@5 {

 compatible = "xilinx,subsystem-v1", "openamp,domain-v1";

 cpus = <&cpus_r5 0x3 0x80000001 µblaze0 0x1 0x00000000>;

 memory = <0x0 0x100000 0x0 0x400000>;

 id = <0x4>;

 flags = <0x0>;

 flags-names = "dev";

 access = <&can0>;

 access-flags-names = "dev";

 include = <&resource_group_1>;

 };

 };

Lopper Status Update
Current defined stages in the Lopper Framework / Pipeline

Frontend: yaml, dts

Translation: yaml (new)

Tree Processing: lops/assists (on LopperTree)

Backend (yaml, dts, dtb, custom)

Server / Daemon (ReST)

In progress activities:

Addition of the Zephyr dtlib/edtlib processing as a new Frontend and processing resource

pypi installation

Extended YAML processing / expansion

ReST API

Updated reference pipeline for SDT specification

Example: Xilinx CDO Generation with Lopper
Inputs:

System Device Tree (dts, dtsi, overlays)

Lopper Operations (lops)

yaml domain/subsystem specification

python assists

Outputs:

Modified system device tree

Xilinx CDO file for firmware consumption

Flow:

Setup / Load:

lops are loaded and assists registered

Parse:

YAML and Device Tree components are parsed

Translation on registered inputs

A combined LopperTree registration is instantiated

Exec:

lops are applied to the tree

Rename/modify/delete/select/etc

Registered assists are triggered (CDO)

Assists execute, and examine LopperTree

Xilinx CDO operations are generated

Output:

modified (combined) device tree

CDO output file

